DP

LC321. Create Maximum Number

Find max k numbers in two array.

Posted by freeCookie🍪 on January 2, 2017

LC321. Create Maximum Number

Given two arrays of length m and n with digits 0-9 representing two numbers. Create the maximum number of length k <= m + n from digits of the two. The relative order of the digits from the same array must be preserved. Return an array of the k digits. You should try to optimize your time and space complexity.

Example 1:

nums1 = [3, 4, 6, 5] nums2 = [9, 1, 2, 5, 8, 3] k = 5 return [9, 8, 6, 5, 3]

找两个array里最大的k个数,但是要求按照array本身的顺序排序输出,思路是对于两个array,分别取i,j个数,令i + j = k,在所有的结果中取最大的array。

低卡百事大神的解法

我自己写的时候merge错了几~~百~~次,后来发现如果arr[1]和arr[2]中间的某个数字相等的话,是要先跳到另一个array的…就按照题解改过来了。

public class Solution {
    public int[] maxNumber(int[] nums1, int[] nums2, int k) {
        // each time get i numbers from nums1 and j numbers from nums2, i + j = k
        // compare each result get the largest one
        int len1 = nums1.length, len2 = nums2.length;
        int[] ans = new int[k];
        for(int i = Math.max(0, k - len2); i <= k && i <= len1; i++){
            int[] cur = merge(maxSub(nums1, i), maxSub(nums2, k-i), k);
            //if(i == Math.max(0, k - len1))  ans = cur;
            if(larger(cur, 0, ans, 0)) ans = cur;
        }
        return ans;
    }
    
    private int[] merge(int[] arr1, int[] arr2, int k){
        int[] ans = new int[k];
        for (int i = 0, j = 0, r = 0; r < k; ++r)
            ans[r] = larger(arr1, i, arr2, j)? arr1[i++] : arr2[j++];
        return ans;
    } // merge
    
    private int[] maxSub(int[] arr, int k){
        int[] res = new int[k];
        int n = arr.length;
        for(int i = 0, j = 0; i < n; i++){
            while(n - i > k - j && j > 0 && res[j-1] < arr[i]) j--; // older number is less, cover it
            if(j < k)   res[j++] = arr[i]; // find a larger number
        }
        return res;
    } // maxSub
    
    private boolean larger(int[] arr1, int i, int[] arr2, int j){
        while (i < arr1.length && j < arr2.length && arr1[i] == arr2[j]) {
            i++;
            j++;
        }
        return j == arr2.length || (i < arr1.length && arr1[i] > arr2[j]);
    } // larger
}

O()(n+m)^3) worst

后来又看了 细语呢喃的题解, greater函数也可以这样写。

枚举数组长度复杂度O(k),找出最大子数组O(n),合并的话O(k^2)

而k最坏是m+n,所以总的复杂度就是O((m+n)^3)

public boolean greater(int[] nums1, int start1, int[] nums2, int start2) {
        for (; start1 < nums1.length && start2 < nums2.length; start1++, start2++) {
            if (nums1[start1] > nums2[start2]) return true;
            if (nums1[start1] < nums2[start2]) return false;
        }
        return start1 != nums1.length;
    }