DP

LC87. Scramble String

Posted by freeCookie🍪 on January 12, 2017

LC87. Scramble String

Given a string s1, we may represent it as a binary tree by partitioning it to two non-empty substrings recursively.

Below is one possible representation of s1 = "great":

    great
   /    \
  gr    eat
 / \    /  \
g   r  e   at
           / \
          a   t

To scramble the string, we may choose any non-leaf node and swap its two children.

For example, if we choose the node "gr" and swap its two children, it produces a scrambled string "rgeat".

    rgeat
   /    \
  rg    eat
 / \    /  \
r   g  e   at
           / \
          a   t

We say that "rgeat" is a scrambled string of "great".

Similarly, if we continue to swap the children of nodes "eat" and "at", it produces a scrambled string "rgtae".

    rgtae
   /    \
  rg    tae
 / \    /  \
r   g  ta  e
       / \
      t   a

We say that "rgtae" is a scrambled string of "great".

Given two strings s1 and s2 of the same length, determine if s2 is a scrambled string of s1.

java solution

思路是对于对于s1,在每个可能分割的位置分割,递归检查是否有可能是同一字符串,basecase是对于length == 1的字符串,s1的s2子串相等。

public class Solution {
    public boolean isScramble(String s1, String s2) {
        // partialize s1 and s2, if any union of two part can match, return true
        if(s1.equals(s2))   return true;
        char[] arr1 = s1.toCharArray();
        char[] arr2 = s2.toCharArray();
        int[] count = new int[26];
        for(int i = 0; i < arr1.length; i++){
            count[arr1[i] - 'a']++;
            count[arr2[i] - 'a']--;
        }
        for(int i = 0; i < 26; i++) if(count[i] != 0)   return false;
        for(int i = 1; i < arr1.length; i++){
            if(isScramble(s1.substring(i), s2.substring(i)) && isScramble(s1.substring(0, i), s2.substring(0, i)))  return true;
            if(isScramble(s1.substring(0, i), s2.substring(arr1.length - i)) && isScramble(s1.substring(i), s2.substring(0, arr1.length - i)))    return true;
        }
        return false;
    }
}

Quite a few people here said recursion (without cache) is better than dp, and gave a reason that recursion has something called “pruning”. Pruning means nothing when the two strings mismatch.

BTW, recursive (without cache) is O(a^n), dp is O(n^a)